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Social scientists often analyze a probability 
sample of a population rather than a complete 
census. They then face the task of inferring 
from sample results to the results they would 
have obtained if the analysis were performed over 
the entire population. 

One of the keys to making these needed inferences 
is the availability of methods for estimating the 
sampling errors of the sample derived population 
estimates, coupled with generalizations that can 
be made about the distribution of these popula- 
tion estimates and their estimated sampling 
errors. 

In this paper, we lay out three general methods 
that may be used to estimate sampling errors of 
population estimates from complex (clustered and 
stratified) probability samples. For each of 
these methods, we describe their implementability 
and discuss their reliability and validity. This 
discussion of reliability and validity is based 
on recently completed empirical research. 

For the sake of expositional simplicity, let us 
assume a sample design that calls for the selec- 
tion of two primary sampling units (psu's) from 
each of H strata. It is assumed that there are 
A primary units in each stratum, and that the se- 
lection of two of these A units is made by simple 
random sampling without replacement. Thus, we 
have a clustered and stratified sampling design 
where each population element has equal probabil- 
ity (f) of appearing in the sample (self -weighted 
sample). It should be noted that any of the 
three variance estimation methods can be general- 
ized to accomodate unequal allocation between 
strata, PPS (or any non -epsem) selection of psu's 

within strata, as well as subsampling of psu's. 

To avoid confusion, I will be using the term 
first -order to describe sample estimates g(S), 
where g is a function and S is a sample, and cor- 

responding population parameters g(P), where P 

is the population, that are of primary interest 
to the substantive analyst. Some examples of 

these first -order estimates and parameters are 
ratio means, differences of ratio means, totals, 

ratios of ratios, simple correlations, partial 
correlations, multiple correlations, and regress- 
ion coefficients (simple, multiple, path, MCA, 

dummy variable, etc.). The term Second -order is 
used to describe estimates, also made from the 
sample, of the sampling variability (error) of 
the first -order estimates. 

The three second -order estimation techniques des- 
cribed in this paper are labelled the Taylor ex- 
pansion method (TAYLOR), the method of balanced 
repeated replication (BRR), and the method of 
jack -knife repeated replication (JRR). It should 
be noted, however, that this scheme of appella- 
tion is not unique. 

1This research was carried out under a Joint Re- 
search Project with the U.S. Bureau of the Cen- 
sus. This article draws from results to be 
found in (3). 
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Taylor Expansion Method 

The use of the Taylor expansion for obtaining an 
estimate of the variance of the first -order esti- 
mate of a ratio mean has been known for some 
time. All sampling textbooks describe its use in 
this context. Deming [2] and Kish [7] describe 
its use in the propagation of variance for other 
functions of the basic sample sums. The method 
is also known as the "delta" or 6-method, or sim- 
ply as the linearization method. However, to my 
knowledge, the first detailed published exten- 
sion, specific to survey sampling, of this method 
to more complex first -order estimates is due to 
Tepping [17]. 

When this method is used, we produce an approxi- 
mate estimate of the sampling variance of a sam- 
ple function that is the linear or first term of 
the Taylor series expansion of the first -order 
sample estimate of interest. 

There are actually two, and sometimes three, 
approximation assumptions that are made when this 
method is used. Following Tepping's paper, the 
method can be described as follows: 

Let y = (y1,...,yk) be a vector of sample 

statistics that are linear combinations of 

the primary sampling unit values 

where h is the index over strata and a is 
the psu within strata index. That is, 

H 2 H 

E E yiha E yih 
h=1 a=1 h=1 

Similarly, let E(y) Y 
k) 

be 

the corresponding vector of population val- 
ues. Also, let g(Y) be the first -order 
parameter we wish to estimate by the first - 
order sample estimation function g(y). 

The first assumption to be made is that the sam- 
pling variance of g(y) is approximately equal to 
the sampling variance of the first degree terms 

of the Taylor approximation of g(y) near Y. That 
is, 

VAR(g(y)) VAR(g(Y) +iEl(yi-Yi) (2) 

where the partial derivatives are evaluated at 
y = Y. Since the terms g(Y) and Y(ag(Y) /dYi) are 

constant over all samples,'this reduces to 

k 
VAR(g(y)) VAR( E (=ILI) yi) (3) 

i=1 i 

The terms yi and Yi are linear combinations of 

corresponding values of the psu's, thus of the 



stratum values and Because selection 

is assumed independent between strata, we may re- 
write (3) as 

VAR(g(y)) E Wh VAR( ih) ,(4) 
h=1 

where Wh is the constant "weight" of the hth 

stratum. 

If there are two primary units selected without 
replacement and with equal probabilities fh, from 

each stratum, then we may estimate the variance 
of the by 

var( E 

1=1 
ih 

2 

(5) 
i i=1 

where yihl and yih2 are the sample totals from 

the two psu's of the hth stratum. Keyfitz [6] 

called early attention to this simple form for 
two primary sampling units. If Wh 1 and = f 

for all h =1,...,H, our estimate of VAR(g(y)) is 

var(g(y)) = 

(1-f) E yihl 
adYY) 

2 
.(6) 

h=1 i 

In order to use this estimate, we should ideally 
have values for the constants ag(Y) /dYi. Of 

course, if these were known, we would probably 
know g(Y) and would not need to make the estim- 
ate g(y). These constants must be estimated from 
the sample at hand. Thus, we have the second 
approximation assumption associated with this 
method. 

It is commonly assumed that this substitution of 
sample values for population values does not 
greatly increase the error in this estimate of 
variance. However, this is only a conjecture. 

Balanced Repeated Replication (BRR) Methods 

More complete descriptions and discussions of 
balanced repeated replication methods for comput- 
ing estimates of sampling errors have already 
appeared in a number of developmental papers [4, 

5, 8, 9, 10, 11, 12, 14]. However, as is the 
case with the other two variance estimation 
methods, with the exception of an unpublished 
study by Tepping [16] concerning the behavior of 
the Taylor expansion estimates of the variance of 
simple ratios and the research herein described 
[3], no empirical data have been collected that 
deal with the validity and precision of these 
methods. 

The variance estimates produced by BRR can be 
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described as follows: Assume that we have a 
stratified sample design with two primary sam- 
pling units selected from each stratum with equal 
probability f (srs). Let S denote the entire 

sample; let Hi denote the ith half -sample formed 

by including one of the two primary units in each 

of the strata; and let Ci denote the ith comple- 

ment half -sample, formed by the primary units in 
S not in H. 

If we form k half -samples Hi,...,Hk and corres- 

ponding complement half -samples C1,...,Ck, then 

we may produce four BRR type estimates of vari- 
ance of the first -order estimate g(S). 

Half Minus Total - -H(g(S)) 

(1_ (g(H )-g(S)) 
2 

Complement Minus Total - 

(1-f) 
(g(C )-g(S))2 k 

i=1 
i 

(8) 

Sum of BRR -H and BRR -C - varß -S(g(S)) 

H(g(S)) 
+ varBRR- C(g(S)) 

(9) 
2 

Half Minus Complement - varB D(g(S)) 

k 
(1-f) 

E (g(Hi) - g(Ci))2 (10) 
i =1 

There are several methods for choosing the pat- 
tern of primary units that form the repeated half 
and complement half samples Hi and Ci. The meth- 

od used in my empirical research is known as 
"full- orthogonal balance." For a more complete 
description of the method, see [10, 11]. 

As previously noted, each of the second -order es- 
timates actually estimates the variance of a lin- 
earized form of the first -order estimate. In the 
case of the four BRR estimates, this lineariza- 
tion of g(S) is 

E + g(C)) . 

Because of the interchangeability of Hi with Ci, 

the forms BRR -H and BRR -C possess the same expect- 
ation. As a result, their mean, BBR -S, shares 
this equality. The BRR -H and BRR -C forms should 
be viewed as estimates of BRR -S, which are less 



costly to compute. For the moment, we will elim- 
inate the -H and -C forms of BRR from our discus- 
sion. If the function (11) has bias which is 
linearly decreasing in the number of primary sam- 

pling units, the BRR -S form (as well as the -H 

and -C forms) gives an unbiased estimate of the 

mean square error of (11). 

Under any circumstances, the form BBR -D is an un- 

biased estimate of variance for (11) [8, 9]. 

Jack -Knife Repeated Replication (JRR) Methods 

The term jack -knife repeated 'replication des- 
cribes a set of second -order estimation methods 

that were motivated by the Tukey jack -knife esti- 
mation procedure [1, 18] and by BRR. 

With BRR methods, each of the k replications es- 
timates the variance of the entire sample. With 

the JRR methods, each replication gives us a 
measure of the variance contributed by a single 
stratum. The technique used to measure this 

stratum variance contribution was suggested by 

the Tukey jack -knife method for variance esti- 

mates formed by leaving out replicates of the 

sample. The specific procedures described below 

appear in the literature for the first time here. 

JRR estimates of the variance are computed as 
follows: Assume that we have an epsem, strati- 

fied sample design with two primary sampling un- 
its selected with equal probability f, from each 
of H strata. Let S denote the entire sample; let 

(i =1 ..... H), denote the replicate formed by 

removing from S one of psu's in the ith stratum, 

and including twice the other psu in the ith 
stratum. Let (1= 1,...,H) denote the comple- 

ment replicate formed from S by interchanging the 

psu's in the ith stratum that are eliminated and 
duplicated. The four JRR estimates of the vari- 
ance of the first -order estimate g(S) are: 

Estimate I (JRR -H) 

H 

varJRR-H(8(S))- (1-f) E (g0 )-g(S))2 (12) 

i-1 

Estimate II (JRR -C) 

H 
varJR11-C(8(S))- (1-f) E (8(CJi)-8(S))2 (13) 

i-1 

Estimate III (JRR -S) 

H(g(S)) 
(g(S)) 

varJRR-S(8(S))-. 
2 (14) 

Estimate IV (JRR -D) 

H 
varJRR-D(S(S)) 14f (8(J)-g(CJi))2 (15) 

From (15), the linearization associated, in a 
loose fashion, with the JRR estimates is of the 
form 

H 

(8(Ji) + g(CJi)) (16) 
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As is the case with BRR, the JRR forms suffixed 
with -H and -C share the same expectation with 
each other and with JRR -S. These two former 
forms should be considered as cheaper to compute 
but less precise forms of JRR -S. As we did with 
BRR -H and BRR -C, the forms JRR -H and JRR -C will 
be, for the moment, eliminated from our discus- 
sion. 

Implementability 

For all three variance estimation methods (TAYLOR 
-1 form only; BRR-2 forms, BRR -S and BRR -D; JRR- 
2 forms, JRR -S and JRR -D), as applied to first - 
order estimates which are functions of total sam- 
ple first and second moments, much of the cost of 
computation is directly related to the number of 
strata; not to the total sample size. All three 
methods require only one pass (by the computer) 
over the entire set of individual cases. In this 
single pass sums, sums of squares, and sums of 
cross products, are computed for each of the 
2 x H psu's that constitute the entire sample. A 
simultaneous accumulation over psu's yields in- 
termediate statistics for the total sample. All 
subsequent computations are performed on these 
psu and total sample "intermediate statistics." 

If the TAYLOR method of variance estimation is 
used, the intermediate statistics for the total 
sample, the in (1), are used to produce the 

sample estimates of the required partial deriva- 
tives ag(Y) /dYi. Given these partials, we then 

use the psu intermediate statistics to form the 

k 
terms E paired psu. su (ag(Y))y for each p aired 

i 
iha 

squared differences of these terms (6) yield the 
estimate of sampling error. 

When the BRR method of variance estimation is 
used, one pass over the set of 2 x H psu inter- 
mediate statistics is required to form a half - 
sample and its complement. The half -sample in- 
termediate statistics are formed by the accumula- 
tion of one of the two sets of psu intermediate 
statistics from each of the H strata. The com- 
plement half -sample intermediate statistics are 
formed by subtracting the half -sample intermedi- 
ate statistics from the intermediate statistics 
for the total sample. The required first -order 
estimates g(S), g(Hi), and g(Ci) are produced 

from the intermediate statistics from the total 

sample, the ith half -sample, and the ith comple- 
ment half -sample. These terms are manipulated as 
in (9) and (10) to form the BRR -S or BRR -D esti- 
mate of sampling error. 

The computation required for the JRR estimates of 
sampling error are essentially the same as those 
required for BRR, with the exception of the form- 
ation of the replicates and complement replicates. 

To form the ith replicate, we subtract from the 
total sample intermediate statistics the inter- 
mediate statistics from one of the psu's in the 

ith stratum, and add to this the intermediate 
statistics from the other psu in the stratum. 
Reversing the labeling of the psu's within the 

ith stratum, we repeat this procedure to form the 



ith complement replicate. 

In terms of time requirements, the TAYLOR method 
of variance estimation is optimal for relatively 
simple first -order estimates. This includes sim- 
ple ratio means, differences of ratio means, and 
simple ratios of ratios. The TAYLOR method be- 
gins to lose its time advantage when the compu- 
tations required to make sample estimates of the 
partial derivatives become more time -consuming 
than the time required to form the half or repli- 
cate samples. Although the point at which this 
occurs is somewhat dependent on the number of 
strata, we have found that the computation of 
sampling errors for simple correlation coeffic- 
ients and simple or multiple regression coeffic- 
ients is equally time- consuming with all three 
methods. For even more complex first -order esti- 
mates, the expression of the partial derivatives 
in closed form may be beyond our mathematical 
ability and in this case we must use either BRR 
or JRR. 

At the University of Michigan Survey Research 
Center, we have not as yet found these forms for 
partial and multiple correlation coefficients, 
although this certainly does not mean that they 
do not exist. 

This final observation points out a strength of 
JRR and BRR methods for variance estimation. If 

we can specify the first -order estimate g(S) and 
if we can assume that g(S) is reasonably close to 
(g(Hi) + g(Ci)) /2, then we can compute an esti- 

mate of the sampling error of g(S) with BRR or 
JRR. 

Reliability and Validity 

So far I have described three methods of estima- 
ting sampling errors and have commented on their 
implementabilíty and relative costs. Now we must 
deal with the question of how well these esti- 
mates perform. It would have been preferable if 
we had general analytic and non -assymtotic com- 
parisons of these three methods. However, to 

date, efforts in this area have not yielded use- 
ful results. Following a tradition among stat- 
isticians that goes back at least as far as 1907, 
when W.S. Gossett, writing under the name "Stu- 
dent," selected 750 simple random samples from a 
population of criminals' left middle finger meas- 
urements in order to evaluate his theoretical de- 
rivation of the distribution of the sample mean 
divided by its estimated standard error [15], I 

empirically compared and evaluated all three var- 
iance estimation methods, using three clustered 
and stratified sample designs which called for 

the paired selection of primary sampling units 
(approx. 14 elements) from 6 strata (approx. 170 
elements), 12 strata (approx. 340 elements) and 

30 strata (approx. 847 elements). For a more 
complete description of this study, which made 
use of data from the Current Population Survey of 
the U.S. Bureau of the Census, the reader is di- 
rected to Frankel [3]. The three methods (five 

variants: TAYLOR, BRR -S, BRR -D, JRR -S, JRR -D) 
wer' used to estimate the sampling error of sim- 
ple ratio means, differences of ratios, simple 
correlations, and multiple regression coeffic- 
ients. BRR and JRR methods were used to estimate 
sampling errors for partial and multiple corre- 
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lation coefficients. 

Several criteria were used in evaluating the rel- 
ative merits of the variance estimation methods. 
First, we looked at their bias, their variance 
and their mean squared error. None of the three 
methods appeared to be singularly optimal under 
any of these criteria. 

Somewhere along the line, we realized that none 
of these criteria actually told us what we wanted 
to know. We decided that the designation of a 
statistically best variance estimation technique 
should be based on a measure of how well the 
technique allowed the analyst to make valid in- 
ference statements about first -order estimates. 
Put another way, we decided that our prime inter- 
est was not in variance estimation, per se, but 
in variance estimation as an imput to inference 
statements. 

For this reason, we chose as our ultimate evalu- 
ative criteria the degree to which these three 
variance estimation techniques would yield esti- 
mates, var (g(S)), that made the approximation. 

g(S) - E(g(S)) 
t(H) 

var(g(S)) 
(17) 

most valid. For each of the five estimation 
forms, TAYLOR, BRR -S, BRR -D, JRR -S, and JRR -D, we 
computed the proportion of times this ratio, 
(g(S) - E(g(S)),/ var(g(S)), computed for each 
sample selected under a particular design, fell 
within the symmetric limits + 2.576, + 1.960, 
+ 1.645, + 1.280, and 1.000. Table -1 shows 
these proportions when this ratio is distributed 
exactly as a Student's t random variable, and 
Tables 2 -6 show these proportions for the five 
different variance estimation forms. Since the 
expected proportions vary with the degrees of 
freedom, in this case equal to the number of 
strata, these proportions are shown separately 
for each of the three sample designs studied. 
The proportions were averaged over first -order 
estimates of the same type. There were 6 means, 
12 differences of means (D.MEANS) and simple cor- 
relations (CORR.S), 8 multiple regression coeffi- 
cients (BETAS), 6 partial correlation coeffi- 
cients (PARTIAL R.S) and 2 multiple correlation 
coefficients (MULTIPLE R.) involved in these av- 
erages. 

For all types of first -order estimates studied, 
we find the average proportions (rounded to two 
places) produced by the BRR -S estimates (Table 3) 
agree at least as well, and in most cases better, 
with proportions predicted by Student's t, than 
proportions produced by any of the other variance 
estimation methods (TAYLOR, BRR -D, JRR -S, JRR -D). 

Although there is some variability between first - 
order estimate types and between the various sam- 
ple designs (sizes), the proportions produced. 
with BRR -S estimates, within symmetric intervals, 
agree excellently with those predicted by Stu- 
dent's t for all first -order estimates except the 
multiple correlation coefficients (See Tables 1 

and 3). 

Although the BRR -S method does produce estimates 
of variance that are optimal under the criteria 
we have chosen, we find that the other methods 
are often very close seconds. A measure of this 



closeness is given in Table 7 which is derived 
from Tables 2 -6. Happily, this table indicates 
that when we are dealing with first -order esti- 
mates that are ratio means and differences of 
means, all methods perform about equally well. 
Thus, given the research at hand, we can tenta- 
tively recommend the following optimal (both in 
terms of computing costs and our chosen statis- 
tical criteria) strategy be followed for produc- 
ing sampling errors of first -order population 
estimates. 

1. Use the Taylor method for ratio means, differ- 
ences of ratios and other similar forms. 

2. Use BRR -S for more complex regression -related 
statistics; correlations and regression coef- 

ficients. 

3. Given 1 and 2, one can feel fairly safe in 
using the approximation 

(S) - E(g(S)) 

var(g(S)) t(H) 

in order to generate either classical or Bay - 
esian inference statements. 

TABLE 1 

PROPORTION OF STUDENT'S T AREA WITHIN SELECTED INTERVALS 

Degrees Of 
Intervals 

Freedom +2.576 +1.960 +1.645 +1.282 +1.000 

6 .9580 .9023 .8489 .7529 .6441 

12 .9757 .9264 .8741 .7760 .6630 

30 .9848 .9407 .8896 .7903 .6747 

.9900 .9500 .9000 .8000 .6827 

TABLE 2 

SAMPLE ESTIMATE - EXPECTED VALUE, DIVIDED BY TAYLOR ESTIMATE OF STANDARD ERROR 
PROPORTION OF TIMES WITHIN STATED LIMITS 

6 STRATA DESIGN 

Statistic(s) +2.576 +1.960 +1.645 +1.282 +1.000 

Means 0.9483 0.8879 0.8329 0.7379 0.6279 

D. Means 0.9450 0.8842 0.8372 0.7381 0.6306 

Corr.S 0.9158 0.8367 0.7744 0.6708 0.5631 

Betas 0.9421 0.8733 0.8146 0.7167 0.6029 

Partial R.S. 
Multiple R. 

12 STRATA DESIGN 

Means 0.9712 0.9192 0.8646 0.7625 0.6542 

D. Means 0.9653 0.9078 0.8525 0.7539 0.6358 

Corr.S 0.9333 0.8589 0.8028 0.7050 0.5992 

Betas 0.9662 0.9121 0.8496 0.7437 0.6217 

Partial R.S. 
Multiple R. 

30 STRATA DESIGN 

Means 0.9819 0.9431 0.8881 0.7844 0.6537 
D. Means 0.9821 0.9433 0.8842 0.7742 0.6429 
Corr.S 0.9650 0.8983 0.8362 0.7225 0.6025 
Betas 0.9787 0.9319 0.8837 0.7781 0.6612 
Partial R.S. 
Multiple R. 
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TABLE 3 

SAMPLE ESTIMATE - EXPECTED VALUE, DIVIDED BY BRR -S ESTIMATE OF STANDARD ERROR 

PROPORTION OF TIMES WITHIN STATED LIMITS 

6 STRATA DESIGN 

Statistic(s) +2.576 +l.960 +1.645 +1.282 +1.000 

Means 0.9558 0.9042 0.8450 0.7562 0.6450 
D. Means 0.9500 0.8997 0.8497 0.7578 0.6483 
Corr.S 0.9475 0.8864 0.8358 0.7386 0.6250 
Betas 0.9662 0.9150 0.8600 0.7683 0.6642 
Partial R.S. 0.9567 0.9083 0.8550 0.7661 0.6511 
Multiple R. 0.9350 0.8950 0.8233 0.7383 0.6133 

12 STRATA DESIGN 

Means 0.9721 0.9221 0.8700 0.7692 0.6612 
D. Means 0.9658 0.9117 0.8617 0:7614 0.6458 

Corr.S 0.9553 0.8967 0.8439 0.7578 0.6397 

Betas 0.9733 0.9337 0.8746 0.7733 0.6529 
Partial R.S. 0.9661 0.9117 0.8694 0.7544 0.6250 
Multiple R. 0.9200 0.8500 0.7900 0.6767 0.5500 

30 STRATA DESIGN 

Means 0.9825 0.9444 0.8906 0.7894 0.6569 
D. Means 0.9829 0.9462 0.8875 0.7783 0.6475 
Corr.S 0.9725 0.9108 0.8617 0.7533 0.6325 
Betas 0.9825 0.9381 0.8900 0.7887 0.6706 
Partial R.S. 0.9550 0.8967 0.8442 0.7533 0.6450 
Multiple R. 0.9125 0.8250 0.7350 0.6375 0.5275 

TABLE 4 

SAMPLE ESTIMATE - EXPECTED VALUE, DIVIDED BY BRR -D ESTIMATE OF STANDARD ERROR 
PROPORTION OF TIMES WITHIN STATED LIMITS 

6 STRATA DESIGN 

Statistic(s) +2.576 +1.960 +1.645 +1.282 +1.000 

Means 0.9533 0.8996 0.8404 0.7487 0.6379 
D. Means 0.9481 0.8950 0.8450 0.7503 0.6436 

Corr.S 0.9411 0.8761 0.8189 0.7131 0.6069 

Betas 0.9587 0.8996 0.8433 0.7446 0.6446 
Partial R.S. 0.9467 0.8900 0.8283 0.7272 0.6111 

Multiple R. 0.9033 0.8217 0.7583 0.6417 0.5467 

12 STRATA DESIGN 

Means 0.9721 0.9208 0.8687 0.7667 0.6579 
D. Means 0.9656 0.9097 0.8594 0.7586 0.6422 

Corr.S 0.9492 0.8883 0.8344 0.7397 0.6264 

Betas 0.9700 0.9250 0.8654 0.7646 0.6412 

Partial R.S. 0.9583 0.9006 0.8456 0.7267 0.6011 

Multiple R. 0.9067 0.8150 0.7400 0.6067 0.5067 

30 STRATA DESIGN 

Means 0.9819 0.9437 0.8894 0.7881 0.6569 

D. Means 0.9825 0.9454 0.8867 0.7779 0.6462 

Corr.S 0.9696 0.9083 0.8550 0.7467 0.6212 

Betas 0.9812 0.9369 0.8881 0.7831 0.6687 

Partial R.S. 0.9533 0.8925 0.8350 0.7433 0.6300 

Multiple R. 0.8975 0.8100 0.7175 0.6125 0.4975 
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TABLE 5 

SAMPLE ESTIMATE - EXPECTED VALUE, DIVIDED BY JRR -S ESTIMATE OF STANDARD ERROR 
PROPORTION OF TIMES WITHIN STATED LIMITS 

6 STRATA DESIGN 

Statistic(s) +2.576 +1.960 +1.645 +1.282 +1.000 

Means 0.9508 0.8942 0.8362 0.7421 0.6329 
D. Means 0.9464 0.8939 0.8397 0.7428 0.6367 
Corr.S 0.9311 0.8633 0.8047 0.6992 0.5906 
Betas 0.9521 0.8833 0.8304 0.7312 0.6200 
Partial R.S. 0.9367 0.8683 0.8100 0.7050 0.5950 
Multiple R. 0.9117 0.8400 0.7800 0.6600 0.5600 

12 STRATA DESIGN 

Means 0.9712 0.9200 0.8662 0.7650 0.6554 
D. Means 0.9653 0.9083 0.8558 0.7561 0.6375 
Corr.S 0.9439 0.8750 0.8261 0.7308 0.6167 
Betas 0.9675 0.9162 0.8542 0.7496 0.6283 
Partial R.S. 0.9494 0.8883 0.8256 0.7106 0.5822 
Multiple R. 0.8950 0.8133 0.7383 0.6333 0.5167 

30 STRATA DESIGN 

Means 0.9819 0.9431, 0.8887 0.7856 0.6537 

D. Means 0.9821 0.9433 0.8842 0.7742 0.6433 

Corr.S 0.9658 0.9021 0.8471 0.7346 0.6137 
Betas 0.9800 0.9325 0.8844 0.7787 0.6631 
Partial R.S. 0.9458 0.8792 0.8192 0.7250 0.6183 
Multiple R. 0.8950 0.7925 0.7025 0.5950 0.4950 

TABLE 6 

SAMPLE ESTIMATE - EXPECTED VALUE, DIVIDED BY JRR -D ESTIMATE OF STANDARD ERROR 
PROPORTION OF TIMES WITHIN STATED LIMITS 

6 STRATA DESIGN 

Statistic(s) +2.576 +1.960 +1.645 +1.282 +1.000 

Means 0.9500 0.8912 0.8337 0.7396 0.6329 
D. Means 0.9458 0.8889 0.8389 0.7400 0.6353 

Corr.S 0.9292 0.8553 0.7944 0.6892 0.5814 

Betas 0.9454 0.8796 0.8258 0.7262 0.6142 

Partial R.S. 0.9300 0.8561 0.7961 0.6906 0.5772 

Multiple R. 0.8850 0.8033 0.7350 0.6133 0.5133 

12 STRATA DESIGN 

Means 0.9712 0.9196 0.8658 0.7642 0.6550 
D. Means 0.9653 0.9083 0.8544 0.7558 0.6369 

Corr.S 0.9428 0.8719 0.8211 0.7217 0.6108 

Betas 0.9671 0.9142 0.8508 0.7471 0.6250 
Partial R.S 0.9450 0.8800 0.8133 0.6994 0.5694 
Multiple R. 0.8850 0.7933 0.7067 0.5933 0.4950 

30 STRATA DESIGN 

Means 0.9819 0.9431 0.8881 0.7850 0.6537 
D. Means 0.9821 0.9433 0.8842 0.7742 0.6433 
Corr.S 0.9658 0.9008 0.8442 0.7333 0.6112 
Betas 0.9794 0.9319 0.8844 0.7787 0.6619 
Partial R.S 0.9450 0.8775 0.8158 0.7225 0.6108 
Multiple R. 0.8875 0.7925 0.6975 0.5825 0.4700 
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TABLE 7 

AVERAGE DEVIATION OF PROPORTIONS FROM THOSE PRODUCED BY BRR -S ESTIMATES 
(IN UNITS OF 0.01) 

First Order Estimates 

Second Order Estimate 
Taylor BRR -D JRR -S JRR -D 

Number Of Strata Number Of Strata Number Of Strata Number Of Strata 
6 12 30 Total 6 12 30 Total 6 12 30 Total 6 12 30 Total 

Means 1.2 0.6 0.4 0.7 0.2 0.0 0.0 0.1 1.0 0.0 0.2 0.4 1.2 0.2 0.2 0.5 

Differences of Means 0.8 0.8 0.6 0.7 0.0 0.2 0.0 0.1 0.6 0.2 0.6 0.5 1.2 0.2 0.6 0.5 

Simple Correlations 5.8 4.0 1.8 3.9 1.8 1.2 0.2 1.1 3.4 2.0 1.4 2.3 4.0 2.8 1.4 2.7 

Regression Coefficients 3.2 2.0 0.8 2.0 0.4 0.4 0.4 0.4 1.8 1.4 0.8 1.3 2.0 1.4 0.8 1.4 

Partial Correlation 
Coefficients - - - 1.6 1.8 1.0 1.5 3.2 3.4 2.0 2.9 3.4 4.4 2.4 3.4 

Multiple Correlation 
Coefficients - - - - 7.0 4.0.2.2 4.4 5.4 3.8 3.2 4.1 9.4 6.1 4.4 6.6 

NOTE: Total is the average for all three sample designs. 

In the few cases where BRR -S proportions were greater than Student's t values, the deviation was 
measured from the hypothesized t value. 
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